244 research outputs found

    Non-Invasive Quantitative Imaging Informs Early Assessment of Cancer Therapeutic Response.

    Full text link
    Therapeutic response assessment of cancer has long been facilitated by non-invasive imaging methods such as magnetic resonance imaging (MRI) and x-ray computed tomography (CT) in the clinic. Standards of patient care are designed around the most common cases, which may not always be efficacious. However, through evidence-based medicine there has begun a shift toward more individualized care. Standard clinical practice for cancer response assessment utilizes only volumetric change, measured prior and following the completion of therapy, providing no opportunity to adjust the treatment. In addition, novel targeted therapies, which may not result in a substantial decrease in tumor volume, are becoming more prevalent in the treatment of tumors. There is a clear need for non-invasive biomarkers that provide near real-time information on the anatomical and physiological makeup of the tumor post-treatment initiation. Tools for assessing early treatment response may allow physicians to dynamically optimize treatments individually, enhancing patient prognoses and avoiding unnecessary patient morbidity. In the following studies, I have evaluated various non-invasive imaging tools for early detection of treatment response in rodent models of disease. Tissue apparent diffusion coefficients (ADC) are known to correlate well with cellular status in cancer, and have shown promise in the detection of early tumor treatment response. Several different numerical models of higher-order diffusion signal attenuation were evaluated to determine their sensitivity to treatment response compared to the standard diffusion model. Dynamic contrast-enhanced (DCE-) MRI has shown sensitivity to vascular changes in cancer and was evaluated as an imaging biomarker of treatment response using a novel vascular-targeted therapy. Quantitative indices generated from DCE-MRI data were compared to diffusion (ADC) and volumetric MRI readouts for response assessment. The utility of imaging readouts from concurrent MRI, CT, bioluminescence, and fluorescence imaging was also evaluated in a model of bone metastasis. Further, a new voxel-based analytical technique, the parametric response map (PRM), was applied to CT images of metastatic bone disease and osteoporosis to evaluate bone response to treatment and hormone deprivation, respectively. Use of these tools may help improve the clinical effectiveness of cancer patient therapy as well as drug development and testing in preclinical models.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102381/1/bahoff_1.pd

    Development of a multiparametric voxel-based magnetic resonance imaging biomarker for early cancer therapeutic response assessment

    Get PDF
    Quantitative magnetic resonance imaging (MRI)-based biomarkers, which capture physiological and functional tumor processes, were evaluated as imaging surrogates of early tumor response following chemoradiotherapy in glioma patients. A multiparametric extension of a voxel-based analysis, referred as the parametric response map (PRM), was applied to quantitative MRI maps to test the predictive potential of this metric for detecting response. Fifty-six subjects with newly diagnosed high-grade gliomas treated with radiation and concurrent temozolomide were enrolled in a single-site prospective institutional review board-approved MRI study. Apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps were acquired before therapy and 3 weeks after therapy was initiated. Multiparametric PRM (mPRM) was applied to both physiological MRI maps and evaluated as an imaging biomarker of patient survival. For comparison, single-biomarker PRMs were also evaluated in this study. The simultaneous analysis of ADC and rCBV by the mPRM approach was found to improve the predictive potential for patient survival over single PRM measures. With an array of quantitative imaging parameters being evaluated as biomarkers of therapeutic response, mPRM shows promise as a new methodology for consolidating physiologically distinct imaging parameters into a single interpretable and quantitative metric

    Safety and immunogenicity of H1/IC31Âź, an adjuvanted TB subunit vaccine, in HIV-infected adults with CD4+ lymphocyte counts greater than 350 cells/mm3: a phase II, multi-centre, double-blind, randomized, placebo-controlled trial.

    Get PDF
    BACKGROUND: Novel tuberculosis vaccines should be safe, immunogenic, and effective in various population groups, including HIV-infected individuals. In this phase II multi-centre, double-blind, placebo-controlled trial, the safety and immunogenicity of the novel H1/IC31 vaccine, a fusion protein of Ag85B-ESAT-6 (H1) formulated with the adjuvant IC31, was evaluated in HIV-infected adults. METHODS: HIV-infected adults with CD4+ T cell counts >350/mm3 and without evidence of active tuberculosis were enrolled and followed until day 182. H1/IC31 vaccine or placebo was randomly allocated in a 5:1 ratio. The vaccine was administered intramuscularly at day 0 and 56. Safety assessment was based on medical history, clinical examinations, and blood and urine testing. Immunogenicity was determined by a short-term whole blood intracellular cytokine staining assay. RESULTS: 47 of the 48 randomised participants completed both vaccinations. In total, 459 mild or moderate and 2 severe adverse events were reported. There were three serious adverse events in two vaccinees classified as not related to the investigational product. Local injection site reactions were more common in H1/IC31 versus placebo recipients (65.0% vs. 12.5%, p = 0.015). Solicited systemic and unsolicited adverse events were similar by study arm. The baseline CD4+ T cell count and HIV viral load were similar by study arm and remained constant over time. The H1/IC31 vaccine induced a persistent Th1-immune response with predominately TNF-α and IL-2 co-expressing CD4+ T cells, as well as polyfunctional IFN-γ, TNF-α and IL-2 expressing CD4+ T cells. CONCLUSION: H1/IC31 was well tolerated and safe in HIV-infected adults with a CD4+ Lymphocyte count greater than 350 cells/mm3. The vaccine did not have an effect on CD4+ T cell count or HIV-1 viral load. H1/IC31 induced a specific and durable Th1 immune response. TRIAL REGISTRATION: Pan African Clinical Trials Registry (PACTR) PACTR201105000289276

    Image Registration for Quantitative Parametric Response Mapping of Cancer Treatment Response

    Get PDF
    AbstractImaging biomarkers capable of early quantification of tumor response to therapy would provide an opportunity to individualize patient care. Image registration of longitudinal scans provides a method of detecting treatment-associated changes within heterogeneous tumors by monitoring alterations in the quantitative value of individual voxels over time, which is unattainable by traditional volumetric-based histogram methods. The concepts involved in the use of image registration for tracking and quantifying breast cancer treatment response using parametric response mapping (PRM), a voxel-based analysis of diffusion-weighted magnetic resonance imaging (DW-MRI) scans, are presented. Application of PRM to breast tumor response detection is described, wherein robust registration solutions for tracking small changes in water diffusivity in breast tumors during therapy are required. Methodologies that employ simulations are presented for measuring expected statistical accuracy of PRM for response assessment. Test-retest clinical scans are used to yield estimates of system noise to indicate significant changes in voxel-based changes in water diffusivity. Overall, registration-based PRM image analysis provides significant opportunities for voxel-based image analysis to provide the required accuracy for early assessment of response to treatment in breast cancer patients receiving neoadjuvant chemotherapy

    Investigating determinants of out-of-pocket spending and strategies for coping with payments for healthcare in southeast Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Out-of-pocket spending (OOPS) is the major payment strategy for healthcare in Nigeria. Hence, the paper assessed the determinants socio-economic status (SES) of OOPS and strategies for coping with payments for healthcare in urban, semi-urban and rural areas of southeast Nigeria. This paper provides information that would be required to improve financial accessibility and equity in financing within the public health care system.</p> <p>Methods</p> <p>The study areas were three rural and three urban areas from Ebonyi and Enugu states in South-east Nigeria. Cross-sectional survey using interviewer-administered questionnaires to randomly selected householders was the study tool. A socio-economic status (SES) index that was developed using principal components analysis was used to examine levels of inequity in OOPS and regression analysis was used to examine the determinants of use of OOPS.</p> <p>Results</p> <p>All the SES groups equally sought healthcare when they needed to. However, the poorest households were most likely to use low level and informal providers such as traditional healers, whilst the least poor households were more likely to use the services of higher level and formal providers such as health centres and hospitals. The better-off SES more than worse-off SES groups used OOPS to pay for healthcare. The use of own money was the commonest payment-coping mechanism in the three communities. The sales of movable household assets or land were not commonly used as payment-coping mechanisms. Decreasing SES was associated with increased sale of household assets to cope with payment for healthcare in one of the communities. Fee exemptions and subsidies were almost non-existent as coping mechanisms in this study</p> <p>Conclusions</p> <p>There is the need to reduce OOPS and channel and improve equity in healthcare financing by designing and implementing payment strategies that will assure financial risk protection of the poor such pre-payment mechanisms with government paying for the poor.</p

    90Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: A phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies

    Get PDF
    AbstractBackgroundFor patients with metastatic pancreatic adenocarcinoma, there are no approved or established treatments beyond the 2nd line. A Phase Ib study of fractionated radioimmunotherapy was undertaken in this setting, administering 90Y-clivatuzumab tetraxetan (yttrium-90-radiolabelled humanised antibody targeting pancreatic adenocarcinoma mucin) with or without low radiosensitising doses of gemcitabine.MethodsFifty-eight patients with three (2–7) median prior treatments were treated on Arm A (N=29, 90Y-clivatuzumab tetraxetan, weekly 6.5mCi/m2doses×3, plus gemcitabine, weekly 200mg/m2 doses×4 starting 1week earlier) or Arm B (N=29, 90Y-clivatuzumab tetraxetan alone, weekly 6.5mCi/m2doses×3), repeating cycles after 4-week delays. Safety was the primary endpoint; efficacy was also evaluated.ResultsCytopaenias (predominantly transient thrombocytopenia) were the only significant toxicities. Fifty-three patients (27 Arm A, 26 Arm B, 91% overall) completed â©Ÿ1 full treatment cycles, with 23 (12 Arm A, 11 Arm B; 40%) receiving multiple cycles, including seven (6 Arm A, 1 Arm B; 12%) given 3–9 cycles. Two patients in Arm A had partial responses by RECIST criteria. Kaplan–Meier overall survival (OS) appeared improved in Arm A versus B (hazard ratio [HR] 0.55, 95% CI: 0.29–0.86; P=0.017, log-rank) and the median OS for Arm A versus Arm B increased to 7.9 versus 3.4months with multiple cycles (HR 0.32, P=0.004), including three patients in Arm A surviving >1year.ConclusionsClinical studies of 90Y-clivatuzumab tetraxetan combined with low-dose gemcitabine appear feasible in metastatic pancreatic cancer patients beyond 2nd line and a Phase III trial of this combination is now underway in this setting

    CT-Based Local Distribution Metric Improves Characterization of COPD

    Get PDF
    Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRM(fSAD) has been observed. We postulate that representing the 3D PRM(fSAD) data as a single scalar quantity (relative volume of PRM(fSAD)) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRM(fSAD) classification maps. We found that the surface area of fSAD (S(fSAD)) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique S(fSAD) patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients

    Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21

    Get PDF
    BACKGROUND: Down syndrome (DS) is caused by trisomy 21 (+21), but the aberrations in gene expression resulting from this chromosomal aneuploidy are not yet completely understood. METHODS: We used oligonucleotide microarrays to survey mRNA expression in early- and late-passage control and +21 fibroblasts and mid-gestation fetal hearts. We supplemented this analysis with northern blotting, western blotting, real-time RT-PCR, and immunohistochemistry. RESULTS: We found chromosome 21 genes consistently over-represented among the genes over-expressed in the +21 samples. However, these sets of over-expressed genes differed across the three cell/tissue types. The chromosome 21 gene MX1 was strongly over-expressed (mean 16-fold) in senescent +21 fibroblasts, a result verified by northern and western blotting. MX1 is an interferon target gene, and its mRNA was induced by interferons present in +21 fibroblast conditioned medium, suggesting an autocrine loop for its over-expression. By immunohistochemistry the p78(MX1 )protein was induced in lesional tissue of alopecia areata, an autoimmune disorder associated with DS. We found strong over-expression of the purine biosynthesis gene GART (mean 3-fold) in fetal hearts with +21 and verified this result by northern blotting and real-time RT-PCR. CONCLUSION: Different subsets of chromosome 21 genes are over-expressed in different cell types with +21, and for some genes this over-expression is non-linear (>1.5X). Hyperactive interferon signaling is a candidate pathway for cell senescence and autoimmune disorders in DS, and abnormal purine metabolism should be investigated for a potential role in cardiac defects

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure
    • 

    corecore